4 years ago

Increasing canopy photosynthesis in rice can be achieved without a large increase in water use–a model based on free-air CO2 enrichment

Tsutomu Watanabe, Martin Sikma, Tsuneo Kuwagata, Hiroki Ikawa, Takeshi Tokida, Yasuhiro Usui, Keisuke Ono, Atsushi Maruyama, Hidemitsu Sakai, Mayumi Yoshimoto, Charles P. Chen, Toshihiro Hasegawa, Hirofumi Nakamura
Achieving higher canopy photosynthesis rates is one of the keys to increasing future crop production; however, this typically requires additional water inputs because of increased water loss through the stomata. Lowland rice canopies presently consume a large amount of water, and any further increase in water usage may significantly impact local water resources. This situation is further complicated by changing environmental conditions such as rising atmospheric CO2 concentration ([CO2]). Here we modeled and compared evapotranspiration of fully developed rice canopies of a high-yielding rice cultivar (Oryza sativa L. cv. Takanari) with a common cultivar (cv. Koshihikari) under ambient and elevated [CO2] (A-CO2 and E-CO2, respectively) via leaf ecophysiological parameters derived from a free-air CO2 enrichment (FACE) experiment. Takanari had 4–5% higher evapotranspiration than Koshihikari under both A-CO2 and E-CO2, and E-CO2 decreased evapotranspiration of both varieties by 4–6%. Therefore, if Takanari was cultivated under future [CO2] conditions, the cost for water could be maintained at the same level as for cultivating Koshihikari at current [CO2] with an increase in canopy photosynthesis by 36%. Sensitivity analyses determined that stomatal conductance was a significant physiological factor responsible for the greater canopy photosynthesis in Takanari over Koshihikari. Takanari had 30–40% higher stomatal conductance than Koshihikari; however, the presence of high aerodynamic resistance in the natural field and lower canopy temperature of Takanari than Koshihikari resulted in the small difference in evapotranspiration. Despite the small difference in evapotranspiration between varieties, the model simulations showed that Takanari clearly decreased canopy and air temperatures within the planetary boundary layer compared to Koshihikari. Our results indicate that lowland rice varieties characterized by high stomatal conductance can play a key role in enhancing productivity and moderating heat-induced damage to grain quality in the coming decades, without significantly increasing crop water use. This article is protected by copyright. All rights reserved.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/gcb.13981

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.