5 years ago

Is Caenorhabditis elegans representative of freshwater nematode species in toxicity testing?

Peter Heininger, Sebastian Höss, Walter Traunspurger, Arne Haegerbaeumer


Multi-species toxicity tests were conducted using a broad range of freshwater nematode species to assess interspecific differences in sensitivity to chemical stress and to compare the toxicity to that on the standard test organism Caenorhabditis elegans. The lethal effects of nine different chemical treatments, including metals and polycyclic aromatic hydrocarbons (PAHs) in single and mixture application, were determined for nematodes exposed for 48 h to spiked aqueous solutions. The investigated freshwater nematodes exhibited distinct differences in their sensitivity. Ranking of the susceptibility of 27 species to chemical stress showed that the effects were largely independent of the tested chemical compounds. Overall, the responses of C. elegans were well within the range of those of freshwater nematode species, being slightly less tolerant to metals, but more tolerant to PAHs than the average freshwater species response. Therefore, this study justified the use of C. elegans as representative model for freshwater nematode species in toxicity testing.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0714-7

DOI: 10.1007/s11356-017-0714-7

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.