4 years ago

Microbial expansion-collision dynamics promote cooperation and coexistence on surfaces

J. David Dyken, Shuang Xu
Microbes colonizing a surface often experience colony growth dynamics characterized by an initial phase of spatial clonal expansion followed by collision between neighboring colonies to form potentially genetically heterogeneous boundaries. For species with life cycles consisting of repeated surface colonization and dispersal, these spatially-explicit “expansion-collision dynamics” generate periodic transitions between two distinct selective regimes, “expansion competition” and “boundary competition”, each one favoring a different growth strategy. We hypothesized that this dynamic could promote stable coexistence of expansion- and boundary-competition specialists by generating time-varying, negative frequency-dependent selection that insulates both types from extinction. We tested this experimentally in budding yeast by competing an exo-enzyme secreting “cooperator” strain (expansion-competition specialists) against non-secreting “defectors” (boundary-competition specialists). As predicted, we observed cooperator-defector coexistence or cooperator dominance with expansion-collision dynamics, but only defector dominance otherwise. Also as predicted, the steady-state frequency of cooperators was determined by colonization density (the average initial cell-cell distance) and cost of cooperation. Lattice-based spatial simulations give good qualitative agreement with experiments, supporting our hypothesis that expansion-collision dynamics with costly public goods production is sufficient to generate stable cooperator-defector coexistence. This mechanism may be important for maintaining public-goods cooperation-and-conflict in microbial pioneer species living on surfaces. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/evo.13393

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.