4 years ago

Increase in taxonomic assignment efficiency of viral reads in metagenomic studies

Metagenomics studies have revolutionized the field of biology by revealing the presence of many previously unisolated and uncultured micro-organisms. However, one of the main problems encountered in metagenomic studies is the high percentage of sequences that cannot be assigned taxonomically using commonly used similarity-based approaches (e.g. BLAST or HMM). These unassigned sequences are allegorically called « dark matter » in the metagenomic literature and are often referred to as being derived from new or unknown organisms. Here, based on published and original metagenomic datasets coming from virus-like particle enriched samples, we present and quantify the improvement of viral taxonomic assignment that is achievable with a new similarity-based approach. Indeed, prior to any use of similarity based taxonomic assignment methods, we propose assembling contigs from short reads as is currently routinely done in metagenomic studies, but then to further map unassembled reads to the assembled contigs. This additional mapping step increases significantly the proportions of taxonomically assignable sequence reads from a variety –plant, insect and environmental (estuary, lakes, soil, feces) – of virome studies.

Publisher URL: www.sciencedirect.com/science

DOI: S0168170217307505

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.