4 years ago

Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor

Adding a Hydrogen Bond May Not Help: Naphthyridinone vs Quinoline Inhibitors of Macrophage Migration Inhibitory Factor
Pawel Dziedzic, Thomas K. Dawson, José A. Cisneros, William L. Jorgensen, Michael J. Robertson, Julian Tirado-Rives, Stefan G. Krimmer, Ana S. Newton
Coordination of the ammonium group of Lys32 in the active site of human macrophage migration inhibitory factor (MIF) using a 1,7-naphthyridin-8-one instead of a quinoline is investigated. Both gas- and aqueous-phase DFT calculations for model systems indicate potential benefits for the added hydrogen bond with the lactam carbonyl group, while FEP results are neutral. Three crystal structures are reported for complexes of MIF with 3a, 4a, and 4b, which show that the desired hydrogen bond is formed with O–N distances of 2.8–3.0 Å. Compound 4b is the most potent new MIF inhibitor with Ki and Kd values of 90 and 94 nM; it also has excellent aqueous solubility, 288 μg/mL. Consistent with the FEP results, the naphthyridinones are found to have similar potency as related quinolines in spite of the additional protein–ligand hydrogen bond.

Publisher URL: http://dx.doi.org/10.1021/acsmedchemlett.7b00384

DOI: 10.1021/acsmedchemlett.7b00384

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.