5 years ago

ClpXP affects the cell metabolism of Salmonella typhimurium partially in an RpoS-dependent manner

Bo Zheng, Tian Tang, Xiaofang Pei, Qun Gao, Jingyuan Xiong, Francis Biville, Chuan Wang, Xiaoli Zou, Hua Lin



ClpXP protease is an important proteolytic system in Salmonella enterica serovar typhimurium (S. typhimurium). Inactivation of ClpXP by deletion of clpP resulted in overproduction of RpoS and a growth defect phenotype. Only one report has indicated that deleting rpoS can restore the growth of a S. typhimurium clpP mutant to the wild-type level. Whether overproduction of RpoS is responsible for the growth deficiency resulting from clpP disruption and how ClpXP affects the cell metabolism of S. typhimurium remain to be elucidated.


The aim of this study is to investigate the effect of ClpXP on cell metabolism of S. typhimurium and explore the possible co-effect of RpoS associated with ClpXP in cell metabolism.


We constructed a clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) using a two-step phage transduction technique. We then compared the metabolite fingerprints of Salmonella rpoS deletion mutant TT-14 (ΔrpoS TT-1), clpP deletion mutant TT-16 (ΔclpP TT-1), and clpP rpoS double deletion mutant TT-19 (ΔclpP ΔrpoS TT-1) with those of the wild-type strain TT-1 by using gas chromatography coupled with mass spectrometry (GC–MS).


Deletion of rpoS recovered only a part of the growth of Salmonella clpP mutant. Further metabolome analysis indicated that clpP disruption changed the levels of 16 extra- and 19 intracellular substances, while the extracellular concentrations of 4 compounds (serine, l-5-oxoproline, l-glutamic acid, and l-tryptophan) and intracellular concentrations of 10 compounds (l-isoleucine, glycine, serine, l-methionine, l-phenylalanine, malic acid, citric acid, urea, putrescine, and 6-hydroxypurine) returned to their wild-type levels when rpoS was also deleted.


ClpXP affects the cell metabolism of S. typhimurium partially in an RpoS-dependent manner.

Publisher URL: https://link.springer.com/article/10.1007/s11306-017-1296-6

DOI: 10.1007/s11306-017-1296-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.