Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models
This study performed an analysis of the influence of the training and test set rational selection on the quality and predictively of the quantitative structure–activity relationship (QSAR) model. The study was carried out on three different datasets of Influenza Neuraminidase (H1N1) inhibitors. The three datasets were divided into training and test sets using three rational selection methods: based on k-means, Kennard–Stone algorithm and Activity and the results were compared with Random selection. Then, a total of 31,490 mathematical models were developed and those models that presented a determination coefficient higher than: r2train > 0.8, r2loo > 0.7, r2test > 0.5 and minimum standard deviation (SD) and minimum root-mean square error (RMS) were selected. The selected models were validated using the internal leave-one-out method and the predictive capacity was evaluated by the external test set. The results indicate that random selection could lead to erroneous results. In return, a rational selection allows for obtaining more reliable conclusions. The QSAR models with major predictive power were found using the k-means algorithm and selection by activity.
Publisher URL: http://www.tandfonline.com/doi/full/10.1080/1062936X.2017.1397056
DOI: 10.1080/1062936X.2017.1397056
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.