5 years ago

Simple Access to the Heaviest Alkaline-Earth Metal Hydride: A Strongly Reducing Hydrocarbon-Soluble Barium Hydride Cluster

Holger Elsen, Gerd Ballmann, Michael Wiesinger, Brant Maitland, Sjoerd Harder, Christian Fischer, Christian Färber
Reaction of Ba[N(SiMe3)2]2 with PhSiH3 in toluene gave simple access to the unique Ba hydride cluster Ba7H7[N(SiMe3)2]7 that can be described as a square pyramide spanned by five Ba2+ ions with two flanking BaH[N(SiMe3)2] units. This heptanuclear cluster is well soluble in aromatic solvents and the hydride 1H NMR signals and coupling pattern suggests that the structure is stable in solution. At 95 °C, no coalescence of hydride signals is observed but the cluster slowly decomposes to undefined Ba hydride species. Complex Ba7H7[N(SiMe3)2]7 is a very strong reducing agent that already at room temperature reacts with Me3SiCH=CH2, norbornadiene and ethylene. The highly reactive alkylbarium intermediates cannot be observed and deprotonate the (Me3Si)2Nˉ ion, as confirmed by the crystal structure of Ba14H12[N(SiMe3)2]12[(Me3Si)(Me2SiCH2)N]4.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201709771

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.