4 years ago

Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation

Selected Copper-Based Reactions for C−N, C−O, C−S, and C−C Bond Formation
Govind Goroba Pawar, Yongwen Jiang, Subhajit Bhunia, Dawei Ma, S. Vijay Kumar
Metal-catalyzed cross-coupling reactions belong to the most important transformations in organic synthesis. Copper catalysis has received great attention owing to the low toxicity and low cost of copper. However, traditional Ullmann-type couplings suffer from limited substrate scopes and harsh reaction conditions. The introduction of several bidentate ligands, such as amino acids, diamines, 1,3-diketones, and oxalic diamides, over the past two decades has totally changed this situation as these ligands enable the copper-catalyzed coupling of aryl halides and nucleophiles at both low reaction temperatures and catalyst loadings. The reaction scope has also been greatly expanded, rendering this copper-based cross-coupling attractive for both academia and industry. In this Review, we have summarized the latest progress in the development of useful reaction conditions for the coupling of (hetero)aryl halides with different nucleophiles. Additionally, recent advances in copper-catalyzed coupling reactions with aryl boronates and the copper-based trifluoromethylation of aromatic electrophiles will be discussed. Recent advances in copper/ligand-catalyzed cross-couplings of (hetero)aryl halides and nucleophiles, copper-catalyzed coupling reactions with aryl boronates, and copper-enabled trifluoromethylations of aromatic electrophiles are discussed in this Review.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/anie.201701690

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.