5 years ago

Electrostatic adsorption-microwave synthesis of palladium nanoparticles on graphene for improved cross-coupling activity

Electrostatic adsorption-microwave synthesis of palladium nanoparticles on graphene for improved cross-coupling activity
Graphene materials as catalyst supports have shown tremendous promise for improving catalytic activity. Pd nanoparticles supported by graphene defects have been shown to improve catalytic activity in Suzuki reactions, but understanding their formation and factors that affect their formation is still elusive. In order to gain a better understanding of this phenomenon, a new synthetic method was developed combining strong electrostatic adsorption method for directed ionic Pd precursor uptake with a new solventless microwave irradiation method to simultaneously form Pd nanoparticles and graphene defect sites. Catalytic activities an order of magnitude higher than commercial Pd-carbon catalysts were obtained using this new method with low microwave powers, short reaction times, under atmospheric conditions, and without the use of reducing agents or solvents. The systematic comparison of catalysts synthesized from four different graphene materials and two different Pd precursors revealed Pd-graphene defects form through three routes that are affected by the initial oxygen content of graphene support and choice of ionic Pd precursor.

Publisher URL: www.sciencedirect.com/science

DOI: S0926860X1730529X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.