Bimetric Theory of Fractional Quantum Hall States.
We present a bimetric low-energy effective theory of fractional quantum Hall (FQH) states that describes the topological properties and a gapped collective excitation, known as Girvin-Macdonald-Platzman (GMP) mode. The theory consist of a topological Chern-Simons action, coupled to a symmetric rank two tensor, and an action \`a la bimetric gravity, describing the gapped dynamics of the spin-$2$ GMP mode. The theory is formulated in curved ambient space and is spatially covariant, which allows to restrict the form of the effective action and the values of phenomenological coefficients. Using the bimetric theory we calculate the projected static structure factor up to the $k^6$ order in the momentum expansion. To provide further support for the theory, we derive the long wave limit of the GMP algebra, the dispersion relation of the GMP mode, and the Hall viscosity of FQH states. We also comment on the possible applications to fractional Chern insulators, where closely related structures arise. Finally, it is shown that the familiar FQH observables acquire a curious geometric interpretation within the bimetric formalism.
Publisher URL: http://arxiv.org/abs/1705.06739
DOI: arXiv:1705.06739v3
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.