5 years ago

On the Heat Kernel and Weyl Anomaly of Schr\"odinger invariant theory.

Benjamín Grinstein, Sridip Pal

We propose a method inspired from discrete light cone quantization (DLCQ) to determine the heat kernel for a Schr\"odinger field theory (Galilean boost invariant with $z=2$ anisotropic scaling symmetry) living in $d+1$ dimensions, coupled to a curved Newton-Cartan background starting from a heat kernel of a relativistic conformal field theory ($z=1$) living in $d+2$ dimensions. We use this method to show the Schr\"odinger field theory of a complex scalar field cannot have any Weyl anomalies. To be precise, we show that the Weyl anomaly $\mathcal{A}^{G}_{d+1}$ for Schr\"odinger theory is related to the Weyl anomaly of a free relativistic scalar CFT $\mathcal{A}^{R}_{d+2}$ via $\mathcal{A}^{G}_{d+1}= 2\pi \delta (m) \mathcal{A}^{R}_{d+2}$ where $m$ is the charge of the scalar field under particle number symmetry. We provide further evidence of vanishing anomaly by evaluating Feynman diagrams in all orders of perturbation theory. We present an explicit calculation of the anomaly using a regulated Schr\"odinger operator, without using the null cone reduction technique. We generalise our method to show that a similar result holds for one time derivative theories with even $z>2$.

Publisher URL: http://arxiv.org/abs/1703.02987

DOI: arXiv:1703.02987v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.