5 years ago

Revisiting the electron-doped SmFeAsO: enhanced superconductivity up to 58.6 K by Th and F codoping.

Qing-Ge Mu, Kang Zhao, Zhi-An Ren, Xiao-Chuan Wang, Gen-Fu Chen, Bin-Bin Ruan, Jia Yu, Tong Liu, Bo-Jin Pan

In the iron-based high-Tc bulk superconductors, Tc above 50K was only observed in the electron-doped 1111-type compounds. Here we revisit the electron-doped SmFeAsO polycrystals to make a further investigation for the highest T-c in these materials. To introduce more electron carriers and less crystal lattice distortions, we study the Th and F codoping effects into the Sm-O layers with heavy electron doping. Dozens of Sm1-x Th-x FeAsO1-y F-y samples are synthesized through the solid state reaction method, and these samples are carefully characterized by the structural, resistive, and magnetic measurements. We find that the codoping of Th and F clearly enhances the superconducting T-c more than the Th or F single-doped samples, with the highest record T-c up to 58.6K when x= 0.2 and y= 0.225. Further element doping causes more impurities and lattice distortions in the samples with a weakened superconductivity.

Publisher URL: http://arxiv.org/abs/1711.05440

DOI: arXiv:1711.05440v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.