4 years ago

The QCD chiral phase transition from non-integer numbers of flavors.

Owe Philipsen, Alessandro Sciarra, Francesca Cuteri

Attempts to extract the order of the chiral transition of QCD at zero chemical potential, with two dynamical flavors of massless quarks, from simulations with progressively decreasing pion mass have remained inconclusive because of their increasing numerical cost. In an alternative approach to this problem, we consider the path integral as a function of continuous number $N_f$ of degenerate quarks. If the transition in the chiral limit is first-order for $N_f \ge 3$, a second-order transition for $N_f=2$ then requires a tricritical point in between. This in turn implies tricritical scaling of the critical boundary line between the first-order and crossover regions as the chiral limit is approached. Non-integer numbers of fermion flavors are easily implemented within the staggered fermion discretization. Exploratory simulations at $\mu=0$ and $N_f = 2.8, 2.6, 2.4, 2.2, 2.1$, on coarse $N_\tau = 4$ lattices, indeed show a smooth variation of the critical mass mapping out a critical line in the $(m,N_f)$-plane. For the smallest masses the line appears consistent with tricritical scaling, allowing for an extrapolation to the chiral limit.

Publisher URL: http://arxiv.org/abs/1711.05658

DOI: arXiv:1711.05658v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.