Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d.
Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension $d$ in terms of (generalized) hypergeometric functions $_2F_1$ and $F_1$. Values at asymptotic or exceptional kinematic points as well as expansions around the singular points at $d=4+2n$, $n$ non-negative integers, may be derived from the representations easily. The Feynman integrals studied here may be used as building blocks for the calculation of one-loop and higher-loop scalar and tensor amplitudes. From the recursion relation presented, higher n-point functions may be obtained in a straightforward manner.
Publisher URL: http://arxiv.org/abs/1711.05510
DOI: arXiv:1711.05510v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.