5 years ago

Ward identities in $\mathcal{N}=1$ supersymmetric SU(3) Yang-Mills theory on the lattice.

Pietro Giudice, Stefano Piemonte, Sajid Ali, Philipp Scior, Gernot Münster, Georg Bergner, Istvan Montvay, Henning Gerber

The introduction of a space-time lattice as a regulator of field theories breaks symmetries associated with continuous space-time, i.e.\ Poincar{\'e} invariance and supersymmetry. A non-zero gluino mass in the supersymmetric Yang-Mills theory causes an additional soft breaking of supersymmetry. We employ the lattice form of SUSY Ward identities, imposing that their continuum form would be recovered when removing the lattice regulator, to obtain the critical hopping parameter where broken symmetries can be recovered.

Publisher URL: http://arxiv.org/abs/1711.05504

DOI: arXiv:1711.05504v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.