5 years ago

Wavenumber selection via spatial parameter jump.

Arnd Scheel, Jasper Weinburd

The Swift-Hohenberg equation describes an instability which forms finite-wavenumber patterns near onset. We study this equation posed with a spatial inhomogeneity; a jump-type parameter that renders the zero solution stable for $x<0$ and unstable for $x>0$. Using normal forms and spatial dynamics, we prove the existence of a family of steady-state solutions that represent a transition in space from a homogeneous state to a striped pattern state. The wavenumbers of these stripes are contained in a narrow band whose width grows linearly with the size of the jump. This represents a severe restriction from the usual constant-parameter case, where the allowed band grows with the square root of the parameter. We corroborate our predictions using numerical continuation and illustrate implications on stability of growing patterns in direct simulations.

Publisher URL: http://arxiv.org/abs/1709.09653

DOI: arXiv:1709.09653v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.