5 years ago

Simulating optical coherence tomography for observing nerve activity: a finite difference time domain bi-dimensional model.

T. G. Constandinou, F. Troiani, K. Nikolic

We present a finite difference time domain (FDTD) model for computation of A line scans in time domain optical coherence tomography (OCT). By simulating only the end of the two arms of the interferometer and computing the interference signal in post processing, it is possible to reduce the computational time required by the simulations and, thus, to simulate much bigger environments. Moreover, it is possible to simulate successive A lines and thus obtaining a cross section of the sample considered. In this paper we present the model applied to two different samples: a glass rod filled with water-sucrose solution at different concentrations and a peripheral nerve. This work demonstrates the feasibility of using OCT for non-invasive, direct optical monitoring of peripheral nerve activity, which is a long-sought goal of neuroscience.

Publisher URL: http://arxiv.org/abs/1711.05644

DOI: arXiv:1711.05644v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.