4 years ago

Lattice Boltzmann simulations of droplet dynamics in time-dependent flows.

M. Sbragaglia, L. Biferale, F. Milan, F. Toschi

We study the deformation and dynamics of droplets in time-dependent flows using 3D numerical simulations of two immiscible fluids based on the lattice Boltzmann model (LBM). Analytical models are available in the literature, which assume the droplet shape to be an ellipsoid at all times. Beyond the practical importance of using a mesoscale simulation to assess ab-initio the robustness and limitations of such theoretical models, our simulations are also key to discuss - in controlled situations - some relevant phenomenology related to the interplay between the flow time scales and the droplet time scales regarding the transparency transition for high enough shear frequencies for an external oscillating flow. This work may be regarded as a step forward to discuss extensions towards a novel DNS approach, describing the mesoscale physics of small droplets subjected to a generic hydrodynamical strain field, possibly mimicking the effect of a realistic turbulent flow on dilute droplets suspensions.

Publisher URL: http://arxiv.org/abs/1711.05498

DOI: arXiv:1711.05498v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.