4 years ago

Ultrastiff Hydrogels Prepared by Schiff's Base Reaction of Bis(p-Formylphenyl) Sebacate and Pillar[5]arene Appended with Multiple Hydrazides

Ultrastiff Hydrogels Prepared by Schiff's Base Reaction of Bis(p-Formylphenyl) Sebacate and Pillar[5]arene Appended with Multiple Hydrazides
Feihe Huang, Zi Liang Wu, Hao Xing, Fengbo Zhu, Huaqiang Ju
Herein a facile method is reported to prepare polymer gels based on the formation of acylhydrazone bond under mild conditions. A pillar[5]arene derivative appended with ten hydrazide groups provides multiple sites for the reaction with the aldehyde groups of bis(p-formylphenyl) sebacate in the presence of a small amount of HCl as the catalyst in dimethyl sulfoxide (DMSO), producing transparent polymer organogels. The mechanical properties of gels can be easily tuned by the molar ratio of the reactant compounds. After solvent exchange from DMSO to water, translucent polymer hydrogels with dramatically enhanced strength and stiffness are obtained. The tensile breaking stress and Young's modulus of hydrogels are 20−60 and 1.2–2.7 MPa, respectively, 100 and 20 times those of the corresponding organogels. These robust hydrogels with ultrahigh stiffness should find applications such as in load-bearing artificial organs. This work should merit designing functional materials using other macrocycles. Based on the formation of acylhydrazone bonds, polymer organogels are facily developed using a pillar[5]arene derivative appended with multiple hydrazide groups as the corsslinks. Hydrogels with dramatically enhanced strength and stiffness are obtained by solvent exchange from dimethyl sulfoxide to water.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/marc.201700232

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.