4 years ago

Low-mass GEM detector with radial zigzag readout strips for forward tracking at the EIC.

Stefano Colafranceschi, Francisco Jimenez, Matthew Bomberger, Marcus Hohlmann, Aiwu Zhang, Mehdi Rahmani

We present design and construction of a large low-mass Triple-GEM detector prototype for forward tracking at a future Electron-Ion Collider. In this environment, multiple scattering of forward and backward tracks must be minimized so that electron tracks can be cleanly matched to calorimeter clusters and so that hadron tracks can efficiently seed RICH ring reconstruction for particle identification. Consequently, the material budget for the forward tracking detectors is critical. The construction of the detector builds on the mechanical foil stretching and assembly technique pioneered by CMS for the muon endcap GEM upgrade. As an innovation, this detector implements drift and readout electrodes on thin large foils instead of on PCBs. These foils get stretched mechanically together with three GEM foils in a single stack. This reduces the radiation length of the total detector material in the active area by a factor seven from over 4% to below 0.6%. It also aims at improving the uniformity of drift and induction gap sizes across the detector and consequently signal response uniformity. Thin outer frames custom-made from carbon-fiber composite material take up the tension from the stretched foil stack and provide detector rigidity while keeping the detector mass low. The gas volume is closed with thin aluminized polyimide foils. The trapezoidal detector covers an azimuthal angle of 30.1 degrees and a radius from 8 cm to 90 cm. It is read out with radial zigzag strips with pitches of 1.37 mrad at the outer radius and 4.14 mrad at the inner radius that reduce the number of required electronics channels and associated cost while maintaining good spatial resolution. All front-end readout electronics is located away from the active area at the outer radius of the trapezoid.

Publisher URL: http://arxiv.org/abs/1711.05333

DOI: arXiv:1711.05333v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.