5 years ago

Scattering Theory and $\mathcal{P}\mathcal{T}$-Symmetry.

Ali Mostafazadeh

We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their $\mathcal{P}$-, $\mathcal{T}$-, and $\mathcal{P}\mathcal{T}$-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and $\mathcal{P}\mathcal{T}$-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.

Publisher URL: http://arxiv.org/abs/1711.05450

DOI: arXiv:1711.05450v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.