5 years ago

Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems.

Sunmyon Chon, Takashi Hosokawa, Naoki Yoshida

Formation of supermassive stars (SMSs) with mass ~10^4 Msun is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al. (2016), where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disk systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disk, and more than 10 stars with masses of a few times 10^3 Msun are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disk system is formed. Only a few SMSs with masses ~ 10^4 Msun are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive blackholes at the end of their lives.

Publisher URL: http://arxiv.org/abs/1711.05262

DOI: arXiv:1711.05262v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.