5 years ago

Evaluation of lightweight and flexible insulating aerogel blankets based on Resorcinol-Formaldehyde-Silica for space applications

Evaluation of lightweight and flexible insulating aerogel blankets based on Resorcinol-Formaldehyde-Silica for space applications
New hybrid organic-inorganic benzoxazine aerogel blankets for space applications have been synthesized and studied. Aerogel blankets were produced using a one-pot synthesis method with a PET unwoven fibrous network core, resorcinol, formaldehyde and a silica source (APTES with MTES or MTMS as silica co-precursors). Modifying the composition of the sol significantly impacts the physical characteristics of the resulting material such as texture (density and porosity), hydrophilicity, and thermal conductivity. The apparent density of the materials decreases when the percentage of solid in the sol (%solid) decreases and the molar ratio nMTES/nAPTES increases. Within the density range studied, apparent density and effective thermal conductivities are inversely proportional. By replacing a part of APTES by MTES or MTMS the density of the aerogels decreases notably whilst maintaining the level of thermal conductivity. This replacement is detrimental to water adsorption which increases for most conditions studied. When MTMS is used as silica co-precursor instead of MTES no significant differences in water adsorption and thermal conductivity were found. Using the RF-APTES-MTES chemical system we were able to obtain a 3%solid flexible hybrid blanket with both low apparent density (0.04gcm−3) and relatively low effective thermal conductivity (0.027Wm−1 K−1 in room conditions). A proof of concept with large panels of this material was done by evaluating them as prototype materials composed of encapsulated aerogel blanket in vacuum and low pressure atmosphere. The blankets show a combination of key characteristics representing the right mix for thermal insulation in space applications operating in non-vacuum environments.

Publisher URL: www.sciencedirect.com/science

DOI: S001430571730294X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.