3 years ago

A statistical approach to evaluate the oxidative process of electrospun polyacrylonitrile ultrathin fibers

A statistical approach to evaluate the oxidative process of electrospun polyacrylonitrile ultrathin fibers
Mirabel Cerqueira Rezende, Lília Müller Guerrini, Bruno Vinícius Manzolli Rodrigues, Jossano Saldanha Marcuzzo, Maurício Ribeiro Baldan, Mauro Santos de Oliveira Junior
A systematic study using design of experiments was applied in order to map out the thermal stabilization of electrospun polyacrylonitrile mats and to investigate how oxidation and cyclization reactions are affected by rate, temperature, and time in an oxidative environment. Cyclization indexes were estimated by a simple methodology based on differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy data. Values of enthalpy and relative intensities of bands assigned to CN and CN bonds were used on calculation. The statistical planning applied in this study was important to show that not always longest treatment is effective to stabilize polyacrylonitrile, but also samples obtained in less than 3 h presented low values of exothermic peak on DSC, values of cyclization indexes near to 90%, both from DSC and Fourier transform infrared spectroscopy techniques, reduced weight loss in thermogravimetric analysis and O/C ratio higher than 10% by X-ray photoelectron spectroscopy, that are appreciated characteristics to a precursor of high-performance carbon materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45458.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45458

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.