5 years ago

Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films

Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films
Nikolay K. Vitanov, Ivanka Petrova, Rumiana Kotsilkova, Evgeni Ivanov, Stanislav Kotsilkov, Hristiana Velichkova
The study compared the effects of swelling and dissolution of a matrix polymer by food simulants on the release of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) from poly(lactic) acid (PLA) and polypropylene (PP) composite films. The total migration was determined gravimetrically in the ethanol and acetic acid food simulants at different time and temperature conditions, while migrants were detected by laser diffraction analysis and transmission electron microscopy. Swelling, thermal analysis, and scanning electron microscopy were applied to characterize the degradation of polymer films at the migration conditions. The release of nanoparticles was found in a high-temperature migration test of 4 h at 90 °C. The hydrolytic dissolution of the PLA polymer in the food simulants caused a migration of GNPs (>100 nm) from the PLA/GNP/MWCNT films into the simulant solvents, while the entangled MWCNTs formed a network on the film surface, preventing their migration from the PLA composite films. In contrast, the PP polymer slightly swells in ethanol solvents, allowing some short carbon nanotubes to be released from the surface and cut edges of the PP/MWCNT film into food simulants. Mathematical modeling of diffusion was applied that accounts for type of polymer, time–temperature conditions, and solvent concentration; model parameters were validated with experimental results. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45469.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45469

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.