3 years ago

Information Flow in Pregroup Models of Natural Language.

Peter M. Hines

This paper is about pregroup models of natural languages, and how they relate to the explicitly categorical use of pregroups in Compositional Distributional Semantics and Natural Language Processing. These categorical interpretations make certain assumptions about the nature of natural languages that, when stated formally, may be seen to impose strong restrictions on pregroup grammars for natural languages.

We formalize this as a hypothesis about the form that pregroup models of natural languages must take, and demonstrate by an artificial language example that these restrictions are not imposed by the pregroup axioms themselves. We compare and contrast the artificial language examples with natural languages (using Welsh, a language where the 'noun' type cannot be taken as primitive, as an illustrative example).

The hypothesis is simply that there must exist a causal connection, or information flow, between the words of a sentence in a language whose purpose is to communicate information. This is not necessarily the case with formal languages that are simply generated by a series of 'meaning-free' rules. This imposes restrictions on the types of pregroup grammars that we expect to find in natural languages; we formalize this in algebraic, categorical, and graphical terms.

We take some preliminary steps in providing conditions that ensure pregroup models satisfy these conjectured properties, and discuss the more general forms this hypothesis may take.

Publisher URL: http://arxiv.org/abs/1811.03273

DOI: arXiv:1811.03273v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.