3 years ago

Flexible fluorescent films based on quantum dots (QDs) and natural rubber

Flexible fluorescent films based on quantum dots (QDs) and natural rubber
Vivechana Agarwal, Carlos Jose Leopoldo Constantino, Caroline Silva Danna, Aldo Eloizo Job, Guilherme Dognani, Igor Osorio-Román
This article presents the fabrication and characterization of polyisoprene fluorescent films doped with CdTe quantum dots (QDs). The biopolymer (polyisoprene) is extracted from natural rubber latex, generating flexible and transparent films in visible range (transmittance over 90%) ideal as a matrix to support QDs. The water solubility of the biopolymer facilitates its doping with water dispersed QDs at room temperature to obtain the fluorescent films. Thermogravimetric analysis reveals that QDs have no significant effect on the thermal properties of the biopolymer. Photophysical characterization of the solution and solid state (films) of the QDs evidenced that the polymer matrix does not influence its emission properties, the maximum fluorescence peaks have only 2 nm of difference between the solution and solid state (films) samples. Therefore, polyisoprene from natural rubber can be considered as an excellent flexible matrix to fabricate fluorescent films with QDs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45459.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45459

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.