3 years ago

Hydrolysis of part of cassava starch into nanocrystals leads to increased reinforcement of nanocomposite films

Hydrolysis of part of cassava starch into nanocrystals leads to increased reinforcement of nanocomposite films
Carolina Oliveira de Souza, Janice Izabel Druzian, Jania Betânia Alves da Silva, Élia Karina de Carvalho Costa
This article reports on using cassava starch nanocrystals (CSN) to strengthen nanocomposite films from the same matrix. CSN were obtained by acid hydrolysis. Nanocomposite (starch:glycerol:CSN/4.0:2.1:1–10 wt %) were processed by casting and the films were characterized. The CSN (30% yield) presented minimally clustered globular forms, 45 to 178 nm in diameter, with a crystalline index of 46%. Water-vapor transmission rate, tensile strength, and elastic modulus of the films were influenced by the linear effect of CSN concentration (R2 = −0.92, 0.91, 0.99, respectively), while the other parameters resulted in quadratic relations |0.69–0.96|. The film with 10% CSN presented a 43% reduction in water vapor permeability, associated with increases of 200% in traction resistance, and 616% in elasticity modulus, compared with the control. The hydrolysis of part of the cassava starch into nanocrystals resulted in a reduction in permeability and nano reinforcement of the films due to good compatibility and interaction between both, without influencing biodegradability. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45311.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45311

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.