5 years ago

Shape memory properties of olefin block copolymer (OBC)/poly(ɛ-caprolactone) (PCL) blends

Shape memory properties of olefin block copolymer (OBC)/poly(ɛ-caprolactone) (PCL) blends
Xue-Fen Wang, Sun-Mou Lai
Conventionally, the chemically crosslinked shape memory polymer (SMP) blends are hard to recycle due to their network structure. Herein, the environmental SMP blends of olefin block copolymer (OBC), a unique thermoplastic elastomer, and poly(ɛ-caprolactone) (PCL) were physically crosslinked. Dicumyl peroxide was used as the compatibilizer to improve their miscibility, as evidenced by the reduced dispersed domain size of PCL in the OBC matrix and the increased complex viscosity. The peroxide modified OBC/PCL blend conferred enhanced tensile properties, increased dynamic storage modulus, increased crystallization temperature, and higher recovery stress. The shape memory behaviors of OBC/PCL blends predeformed under two different predeformation temperatures (30 and 65 °C) were investigated. The recovery stress showed respective maximum peak values corresponding to their predeformation temperatures. In addition, the modified blends gave the better shape memory performance at 65 °C. Besides the peroxide modification approach, a precycle training process via prestretching the samples and reducing the mechanical hysteresis was implemented to improve shape memory performance further. This is the first work on the OBC-based SMP blends to enhance shape memory performance by combining the chemical modification using added peroxide compatibilizer and the process modification using a precycle training process. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45475.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45475

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.