3 years ago

Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review

Virender K. Sharma, Christie M. Sayes, Binglin Guo, Suresh Pillai, Jason G. Parsons, Chuanyi Wang, Bing Yan, Xingmao Ma

Publication date: 25 February 2019

Source: Science of The Total Environment, Volume 653

Author(s): Virender K. Sharma, Christie M. Sayes, Binglin Guo, Suresh Pillai, Jason G. Parsons, Chuanyi Wang, Bing Yan, Xingmao Ma

Abstract

Global production of engineered nanoparticles (ENPs) continues to increase due to the demand of enabling properties in consumer products and industrial applications. Release of individual or aggregates of ENPs have been shown to interact with one another subsequently resulting in adverse biological effects. This review focuses on silver nanoparticles (AgNPs), which are currently used in numerous applications, including but not limited to antibacterial action. Consequently, the release of AgNPs into the aquatic environment, the dissociation into ions, the binding to organic matter, reactions with other metal-based materials, and disruption of normal biological and ecological processes at the cellular level are all potential negative effects of AgNPs usage. The potential sources of AgNPs includes leaching of intact particles from consumer products, disposal of waste from industrial processes, intentional release into contaminated waters, and the natural formation of AgNPs in surface and ground water. Formation of natural AgNPs is greatly influenced by different chemical parameters including: pH, oxygen levels, and the presence of organic matter, which results in AgNPs that are stable for several months. Both engineered and natural AgNPs can interact with metal and metal oxide particles/nanoparticles. However, information on the chemical and toxicological interactions between AgNPs and other nanoparticles is limited. We have presented current knowledge on the interactions of AgNPs with gold nanoparticles (AuNPs) and titanium dioxide nanoparticles (TiO2 NPs). The interaction between AgNPs and AuNPs result in stable bimetallic Ag-Au alloy NPs. Whereas the interaction of AgNPs with TiO2 NPs under dark and light conditions results in the release of Ag+ ions, which may be subsequently converted back into AgNPs and adsorb on TiO2 NPs. The potential chemical mechanisms and toxic effects of AgNPs with AuNPs and TiO2 NPs are discussed within this review and show that further investigation is warranted.

Graphical abstract

Unlabelled Image

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.