3 years ago

N2 fixation associated with the bryophyte layer is suppressed by low levels of nitrogen deposition in boreal forests

Maija Salemaa, Antti-jussi Lindroos, Päivi Merilä, Raisa Mäkipää, Aino Smolander

Publication date: 25 February 2019

Source: Science of The Total Environment, Volume 653

Author(s): Maija Salemaa, Antti-Jussi Lindroos, Päivi Merilä, Raisa Mäkipää, Aino Smolander

Abstract

Biological fixation of atmospheric nitrogen (N2) by bryophyte-associated cyanobacteria is an important source of plant-available N in the boreal biome. Information on the factors that drive biological N2 fixation (BNF) rates is needed in order to understand the N dynamics of forests under a changing climate. We assessed the potential of several cryptogam species (the feather mosses Hylocomium splendens and Pleurozium schreberi, a group of Dicranum bryophytes, two liverworts, and Cladina lichens) to serve as associates of cyanobacteria or other N2-fixing bacteria (diazotrophs) using acetylene reduction assay (ARA). We tested the hypotheses that the legacy of chronic atmospheric N deposition reduces BNF in the three bryophyte species, sampled from 12 coniferous forests located at latitudes 60–68° N in Finland. In addition, we tested the effect of moisture and temperature on BNF. All species studied showed a BNF signal in the north, with the highest rates in feather mosses. In moss samples taken along the north–south gradient with an increasing N bulk deposition from 0.8 to 4.4 kg ha−1 year−1, we found a clear decrease in BNF in both feather mosses and Dicranum group. BNF turned off at N deposition of 3–4 kg ha−1 year−1. Inorganic N (NH4-N + NO3-N) best predicted the BNF rate among regression models with different forms of N deposition as explanatory variables. However, in southern spruce stands, tree canopies modified the N in throughfall so that dissolved organic N (DON) leached from canopies compensated for inorganic N retained therein. Here, both DON and inorganic N negatively affected BNF in H. splendens. In laboratory experiments, BNF increased with increasing temperature and moisture. Our results suggest that even relatively low N deposition suppresses BNF in bryophyte-associated diazotrophs. Further, BNF could increase in northern low-deposition areas, especially if climate warming leads to moister conditions, as predicted.

Graphical abstract

Unlabelled Image

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.