3 years ago

From morphology of attrited copper/MWCNT hybrid fillers to thermal and mechanical characteristics of their respective polymer-matrix composites: An analytical and experimental study

From morphology of attrited copper/MWCNT hybrid fillers to thermal and mechanical characteristics of their respective polymer-matrix composites: An analytical and experimental study
Arash Badakhsh, Chan Woo Park
Synergistic effect of copper and multiwalled carbon nanotube on thermal and mechanical properties of high-density polyethylene (HDPE)-matrix composite was evaluated. Attrition mill was employed to prepare the hybrid powder. Reinforcing the polymer-matrix was carried out using different contents of simultaneously (Sim) and separately (Sep) milled powders as hybrid fillers. X-ray diffraction and microscopy results show different trends of particle size for Sep and Sim affected by both milling time and volume fraction ratio. Thermal characterization indicates that conductivity was enhanced by 90% and thermal expansion was reduced to 53% of neat HDPE. Young's modulus and tensile strength were improved by 7.8 and 1.22 times of neat HDPE, respectively. Also, characteristics of Sim-reinforced composites exhibited better correlated relation with milling time compared with erratic behavior of Sep. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45397.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45397

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.