3 years ago

[ASAP] Enhanced Performance and Conversion Pathway for Catalytic Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited Three-Dimensional Ordered Mesoporous MnO2

[ASAP] Enhanced Performance and Conversion Pathway for Catalytic Ozonation of Methyl Mercaptan on Single-Atom Ag Deposited Three-Dimensional Ordered Mesoporous MnO2
Dehua Xia, Wenjun Xu, Yunchen Wang, Jingling Yang, Yajing Huang, Lingling Hu, Chun He, Dong Shu, Dennis Y. C. Leung, Zhihua Pang
In this study, Ag deposited three-dimensional MnO2 porous hollow microspheres (Ag/MnO2 PHMSs) with high dispersion of the atom level Ag species are first prepared by a novel method of redox precipitation. Due to the highly efficient utilization of downsized Ag nanoparticles, the optimal 0.3% Ag/MnO2 PHMSs can completely degrade 70 ppm CH3SH within 600 s, much higher than that of MnO2 PHMSs (79%). Additionally, the catalyst retains long-term stability and can be regenerated to its initial activity through regeneration with ethanol and HCl. The results of characterization of Ag/MnO2 PHMSs and catalytic performance tests clearly demonstrate that the proper amount of Ag incorporation not only facilitates the chemi-adsorption but also induces more formation of vacancy oxygen (Ov) and lattice oxygen (OL) in MnO2 as well as Ag species as activation sites to collectively favor the catalytic ozonation of CH3SH. Ag/MnO2 PHMSs can efficiently transform CH3SH into CH3SAg/CH3S-SCH3 and then oxidize them into SO42– and CO2 as evidenced by in situ diffuse reflectance infrared Fourier transform spectroscopy. Meanwhile, electron paramagnetic resonance and scavenger tests indicate that •OH and 1O2 are the primary reactive species rather than surface atomic oxygen species contributing to CH3SH removal over Ag/MnO2 PHMSs. This work presents an efficient catalyst of single atom Ag incorporated MnO2 PHMSs to control air pollution.

Publisher URL: http://dx.doi.org/10.1021/acs.est.8b03696

DOI: 10.1021/acs.est.8b03696

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.