3 years ago

Effect of oil spill on compound-specific stable carbon isotope composition of amino acid in Nitzschia closterium and Heterosigma akashiwo

Na Li, Yu Liu, Yuxin Liu, Yadi Lou, Xinda Zhao

Publication date: 25 February 2019

Source: Science of The Total Environment, Volume 653

Author(s): Na Li, Yu Liu, Yuxin Liu, Yadi Lou, Xinda Zhao

Abstract

Marine microalgae, the most important primary producers in marine ecosystems, are susceptible to toxicants and usually selected as the promising organisms for chemical risk testing. The stable carbon isotope ratios (δ13C) of amino acids (AAs) were measured to determine if compound-specific stable isotope analysis could be used to provide insight into the toxic effects of oil spill on the marine microalgae. The water accommodated fractions (WAF) of #180 fuel oil were selected as the toxic targets with different concentrations in acute (96 h) toxic tests. Naphthalene, phenanthrene, anthracene, and fluoranthene were detected as the predominant congeners of polycyclic aromatic hydrocarbons in the WAF, and may be the main toxic components. At the same WAF concentration, the δ13C values of leucine in Nitzschia closterium increased with the culture time, whereas decreased in Heterosigma akashiwo. However, with the increasing WAF concentrations, the δ13C values of glutamic acid exhibited the increasing trend in both of the two kinds of microalgae at the same culture time. The similar phenomenon was also observed for histidine in H. akashiwo, while opposite in N. closterium, but both enriching in δ13C compared to the controlled experiments without the WAF. Under the different culture times and WAF concentrations, the δ13C values of alanine and methionine showed unexpected trend. These findings indicated that the synthesis pathways of AA in microalgae cells were affected by the WAF, thus leading to the carbon isotopic fractionation in AAs. The present study provide a novel approach to explore the toxicity mechanism of primary producers under oil spill stress, and monitor and evaluate the marine ecological risk of oil spill pollution.

Graphical abstract

Unlabelled Image

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.