3 years ago

Incorporating delayed measurements in an improved high-degree cubature Kalman filter for the nonlinear state estimation of chemical processes

Liqiang Zhao, Jianlin Wang, Tao Yu, Kunyun Chen, Andong Su

Publication date: Available online 9 November 2018

Source: ISA Transactions

Author(s): Liqiang Zhao, Jianlin Wang, Tao Yu, Kunyun Chen, Andong Su

Abstract

The on-line estimation of process quality variables has a large impact on the advanced monitoring and control techniques of chemical processes. The present study offers an improved high-degree cubature Kalman filter (HCKF) to solve the nonlinear state estimation problem of high-dimensional chemical processes. We substituted the Cholesky decomposition in the HCKF filter with a diagonalization transformation of the matrix. In addition, we enhanced numerical stability and estimation accuracy. On this basis, we present one nonlinear state estimation method based on the sample-state augmentation and improved HCKF to handle issues with delayed measurements. Finally, we used the nonlinear state estimation experiments for the polymerization process to validate the proposed method. The numerical results indicated the achievement of state estimation with higher accuracy and better stability following the effective utilization of the delayed measurements for nonlinear chemical processes.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.