3 years ago

[ASAP] Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks

[ASAP] Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks
Shao-Ru Wang, Jia-Qi Wang, Bo-Shi Fu, Kun Chen, Wei Xiong, Lai Wei, Guangyan Qing, Tian Tian, Xiang Zhou
In mammals, 5-formylcytosine (5fC) has been identified as an important mark, which plays significant roles in active DNA demethylation and also in epigenetic regulation. It is therefore important to target this epigenetic mark as well as manipulating DNA–protein interactions at this site. A unique feature of 5fC is the presence of a formyl group at the C-5 position. In the current study, we introduce supramolecular coordination chemistry for reversible regulation of DNA–protein interactions on this mark. We have designed and synthesized the 2-(aminooxy)-N-(quinolin-8-yl)acetamide (AQA), which functions well in selective labeling of 5fC mark. Using this feature, the association and disassociation of metal ion supplementation allow blocking and deblocking of DNA–protein interactions. In addition, we synthesized a close analogue of AQA by replacing the nitrogen atom in the quinoline ring with a CH group. Importantly, the regulatory effects of those metal ion supplementations were completely erased. On the basis of the combined information, we propose a conformational flexibility in a side arm in response to switched coordination. In the absence of coordinating interaction, the flexible side arm probably takes on an extended conformation and points away from the hydrogen bonding cavity. Importantly, coordinating interaction is effective in imposing a restrained geometry to this side arm, with the quinoline ring being oriented opposite the complementary nucleobase. Moreover, the coordination-induced activity control can be reversed by supplementation with a number of chelating agents. The concept described is unique in installing an auxiliary side arm with bending flexibility to control oligonucleotide functions. Finally, these findings show promising potential of supramolecular coordination chemistry for DNA epigenetics.

Publisher URL: http://dx.doi.org/10.1021/jacs.8b09113

DOI: 10.1021/jacs.8b09113

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.