3 years ago

[ASAP] Thick TiO2-Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells

[ASAP] Thick TiO2-Based Top Electron Transport Layer on Perovskite for Highly Efficient and Stable Solar Cells
Yong Zhao, Hong Zhang, Xingang Ren, Hugh Lu Zhu, Zhanfeng Huang, Fei Ye, Dan Ouyang, Kok Wai Cheah, Alex K.-Y. Jen, Wallace C.H. Choy
Simultaneously achieving high efficiency, long-term stability, and robust fabrication with good reproducibility in perovskite solar cells (PVSCs) is essential for their practical applications. Herein, we first demonstrate a thick TiO2 backbone film directly on top of a perovskite film through a simple room-temperature solution process. Through the strategy of decorating the TiO2 film with fullerene for passivating traps and filling voids, we achieve a fullerene-decorated TiO2 electron transport layer (ETL) in inverted PVSCs. Because of the suppressed monomolecular Shockley–Read–Hall recombination and ion diffusion of the fullerene-decorated TiO2 ETL, stabilized efficiencies of ∼20% and shelf life stability remaining over 98% of initial efficiency after aging in ambient conditions or 16 months are achieved. Remarkably, the PVSCs are insensitive to TiO2 thickness from 50 to 250 nm, which contributes significantly to the robust fabrication and high reproducibility of the PVSCs. This work provides an ETL design on top of a perovskite film for simultaneous improvement of PVSC efficiency, stability, and reproducibility.

Publisher URL: http://dx.doi.org/10.1021/acsenergylett.8b01507

DOI: 10.1021/acsenergylett.8b01507

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.