3 years ago

Prediction of Bus Travel Time Over Unstable Intervals between Two Adjacent Bus Stops

Mansur As, Tsunenori Mine, Tsubasa Yamaguchi

Abstract

This paper addresses the problem of predicting bus travel time over unstable intervals between two adjacent bus stops using two types of machine learning techniques: ANN and SVR methods. Our model considers the variability of travel time because the travel time is often influenced by stochastic factors, which increase the variance of travel time over an interval between inter-time periods. The factors also affect the variance of the travel time over the interval at the same time period between inter-days. In addition, the factors show some correlation of travel time over the interval between time periods in a day. The performance of the proposed model is validated with real bus probe data collected from November 21st to December 20th, 2013, provided by Nishitetsu Bus Company, Fukuoka, Japan. We demonstrated the impact of two types of input variables for the prediction in off- and on-peak (rush hour) periods. The results show that the two types of inputs can effectively improve the prediction accuracy. Moreover, we compared the proposed method with our previous methods. The experimental results show the validity of our proposed method.

Publisher URL: https://link.springer.com/article/10.1007/s13177-018-0169-3

DOI: 10.1007/s13177-018-0169-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.