3 years ago

Validation of Appropriate Reference Genes for Real-Time Quantitative PCR Gene Expression Analysis in Rice Plants Exposed to Metal Stresses

D. Ebadi Almas, A. Rahmani Kamrodi

Abstract

Environmental pollution by toxic heavy metals may lead to the possible contamination of the rice plant (Oryza sativa L.). Although gene expression analysis through real-time quantitative PCR (RT-qPCR) has increased our knowledge about biological responses to heavy metals, gene network that mediates rice plant responses to heavy metal stress remains elusive. In such scenario, validation of reference gene is a major requirement for successful analyzes involving RT-qPCR. In this study, we analyzed the expression stability of eight commonly used housekeeping genes (GAPDH, Actin, eIF-4α, UBQ 5, UBQ 10, UBC, EF-1α and β-TUB) in rice leaves exposed to four kinds of heavy metals (Zn, Cu, Cd and Pb). The expression stability of these genes was determined using geNorm, NormFinder, BestKeeper and RefFinder algorithms. The results showed that UBQ 10 and UBC were the most stable reference genes across all the tested samples. We measured the expression profiles of the heavy metal-inducible gene O. sativa METALLOTHIONEIN2b (OsMT2b) using the two most stable and one least stable reference genes in all samples. The relative expression of OsMT2b varied greatly according to the different reference genes. Our results may be beneficial for future studies involving the quantification of relative gene expression levels in rice plants.

Publisher URL: https://link.springer.com/article/10.1134/S102144371806002X

DOI: 10.1134/S102144371806002X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.