3 years ago

Temporal separation of Cerenkov radiation and scintillation using a clinical LINAC and artificial intelligence.

Levi Madden, James Archer, Enbang Li, Dean Wilkinson, Anatoly B Rozenfeld
Convolutional neural network (CNN) type artificial intelligences were trained to estimate the Cerenkov radiation present in the temporal response of a LINAC irradiated scintillator-fiber optic dosimeter. The CNN estimate of Cerenkov radiation is subtracted from the combined scintillation and Cerenkov radiation temporal response of the irradiated scintillator-fiber optic dosimeter, giving the sole scintillation signal, which is proportional to the scintillator dose. The CNN measured scintillator dose was compared to the background subtraction measured scintillator dose and ionisation chamber measured dose. The dose discrepancy of the CNN measured dose was on average 1.4% with respect to the ionisation chamber measured dose, matching the 1.4% average dose discrepancy of the background subtraction measured dose with respect to the ionisation chamber measured dose. The developed CNNs had an average time of 3 ms to calculate scintillator dose, permitting the CNNs presented to be applicable for dosimetry in real time.
Open access
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.