3 years ago

Back-propagation neural network and support vector machines for gold mineral prospectivity mapping in the Hatu region, Xinjiang, China

Nannan Zhang, Kefa Zhou, Dong Li

Abstract

Machine Learning technologies have the potential to deliver new nonlinear mineral prospectivity mapping (MPM) models. In this study, Back Propagation (BP) neural network Support Vector Machine (SVM) methods were applied to MPM in the Hatu region of Xinjiang, northwestern China. First, a conceptual model of mineral prospectivity for Au deposits was constructed by analysis of geological background. Evidential layers were selected and transformed into a binary data format. Then, the processes of selecting samples and parameters were described. For the BP model, the parameters of the network were 9–10 − 1; for the SVM model, a radial basis function was selected as the kernel function with best C = 1 and γ = 0.25. MPM models using these parameters were constructed, and threshold values of prediction results were determined by the concentration-area (C-A) method. Finally, prediction results from the BP neural network and SVM model were compared with that of a conventional method that is the weight- of- evidence (W- of- E). The prospectivity efficacy was evaluated by traditional statistical analysis, prediction-area (P-A) plots, and the receiver operating characteristic (ROC) technique. Given the higher intersection position (74% of the known deposits were within 26% of the total area) and the larger AUC values (0.825), the result shows that the model built by the BP neural network algorithm has a relatively better prediction capability for MPM. The BP neural network algorithm applied in MPM can elucidate the next investigative steps in the study area.

Publisher URL: https://link.springer.com/article/10.1007/s12145-018-0346-6

DOI: 10.1007/s12145-018-0346-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.