3 years ago

Ultrasonic cavitation erosion mechanism and mathematical model of HVOF sprayed Fe-based amorphous/nanocrystalline coatings

Lei Qiao, Yuping Wu, Sheng Hong, Jie Cheng

Publication date: Available online 9 November 2018

Source: Ultrasonics Sonochemistry

Author(s): Lei Qiao, Yuping Wu, Sheng Hong, Jie Cheng


A Fe-based amorphous/nanocrystalline coating was prepared on the AISI 321 steel by the high-velocity oxygen-fuel (HVOF) thermal spraying technology in this paper. Cavitation erosion behavior and mechanism of the coating was studied through the analysis of curves for cavitation erosion resistance versus time and the observation of eroded particles, with the AISI 321 steel as a reference. It was found that the Fe-based coating had better cavitation erosion resistance than the AISI 321 steel, and exhibited obvious periodic failure behavior in the cavitation erosion process. Besides, the crystallization of the amorphous phase under the effect of shock wave was observed. The cavitation erosion mathematic model of the coating was also established. The model indicated that the cavitation erosion resistance of the coating was related to the grain size and the fracture energy per unit area of the coating. Small grain size and high fracture energy per unit area were benefit to improve the cavitation erosion resistance of the Fe-based coating.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.