3 years ago

A direct meshless local collocation method for solving stochastic Cahn–Hilliard–Cook and stochastic Swift–Hohenberg equations

Mostafa Abbaszadeh, Amirreza Khodadadian, Maryam Parvizi, Mehdi Dehghan, Clemens Heitzinger

Publication date: January 2019

Source: Engineering Analysis with Boundary Elements, Volume 98

Author(s): Mostafa Abbaszadeh, Amirreza Khodadadian, Maryam Parvizi, Mehdi Dehghan, Clemens Heitzinger


In this study, the direct meshless local Petrov–Galerkin (DMLPG) method has been employed to solve the stochastic Cahn–Hilliard–Cook and Swift–Hohenberg equations. First of all, we discretize the temporal direction by a finite difference scheme. In order to obtain a fully discrete scheme the direct meshless local collocation method is used to discretize the spatial variable and the Euler–Maruyama method is used for time discretization. The used method is a truly meshless technique. In order to illustrate the efficiency and accuracy of the explained numerical technique, we study two stochastic models with their applications in biology and engineering, i.e., the stochastic Cahn–Hilliard–Cook equation and a stochastic Swift–Hohenberg model.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.