3 years ago

On universal realizability of spectra

Ana I. Julio, Carlos Marijuán, Miriam Pisonero, Ricardo L. Soto

Publication date: Available online 9 November 2018

Source: Linear Algebra and its Applications

Author(s): Ana I. Julio, Carlos Marijuán, Miriam Pisonero, Ricardo L. Soto

Abstract

A list Λ={λ1,λ2,,λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix. The list Λ is said to be universally realizable (UR) if it is the spectrum of a nonnegative matrix for each possible Jordan canonical form allowed by Λ. It is well known that an n×n nonnegative matrix A is co-spectral to a nonnegative matrix B with constant row sums. In this paper, we extend the co-spectrality between A and B to a similarity between A and B, when the Perron eigenvalue is simple. We also show that if ϵ0 and Λ={λ1,λ2,,λn} is UR, then {λ1+ϵ,λ2,,λn} is also UR. We give counter-examples for the cases: Λ={λ1,λ2,,λn} is UR implies {λ1+ϵ,λ2ϵ,λ3,,λn} is UR, and Λ1,Λ2 are UR implies Λ1Λ2 is UR.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.