3 years ago

Numerical investigation of boiling heat transfer in a quenching process of jet impingement considering solid temperature distribution

Mehran Ghasemian, Abas Ramiar, Ali Akbar Ranjbar

Abstract

Boiling jet impingements are being widely used in various industries. Hence, a quenching jet impingement is simulated numerically. A solver code based on volume of fluid method was modified to analyze the effects of conjugation and mass transfer, and validated against an experimental study. Then, optimized cooling factor (OCF) was defined to involve temperature uniformity of the block and the cooling rate simultaneously. Subsequently, in laminar two-jet configurations, the effects of velocity inlet function, jet-to-surface and jet-to-jet spacing on standard temperature uniformity index (STUI) and OCF in a highly heated block were investigated. Heaviside function of time for the inlet velocity and periods of pulse between 0 and 0.2 were considered. Some remarkable results are achieved by the proposed configurations. In all cases with pulsating jets, improvements in STUI and OCF relative to pulse-free ones were observed; when V = 0.4 m s−1, OCF peaked at 2 in P = 0.06, which was almost eight times greater than OCF of pulse-free configuration (OCF = 0.24). As velocity decreased, the temperature uniformity improved; however, OCF showed the highest value at higher velocities occurring for lower periods of pulses. This happens because of more uniform temperature distribution in both plate sides and continual destroying film boiling layers generated on the surface. Also, in a jet-to-jet spacing of about one-third of the block length, for all plate lengths, optimal temperature uniformity with maximum OCF was obtained, due to formation of two stagnation points having the highest heat transfer rate by positioning in an ideal distance from each other.

Publisher URL: https://link.springer.com/article/10.1007/s10973-018-7900-9

DOI: 10.1007/s10973-018-7900-9

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.