3 years ago

High ductile fracture of a low-yield-strength steel with a part-through curve crack

Peishi Yu, Jiawang Sun, Chaofeng Zhang, Junhua Zhao


Low-yield-strength (LYS) steels possess ultra-high ductility and low yield ratio which indicates a wide prospect of the application for energy absorption. When a LYS steel-based damper or buffer is activated by a seismic wave or a crash impact, the structural integrity usually has a high risk of failure. Hence, the fracture resistance of LYS steels should be a key parameter for their structural design and integrity assessment. Here, we report both an experimental and a numerical investigation on the fracture behavior of an LYS steel with the yield stress of 100 MPa (LYS100), where a part-through corner or surface crack is machined in specimens and the critical loading capacities of the specimens are determined by our experiments. The suitable material parameters of the extended finite element method for LYS100 are determined based on our experimental results, which can be used to describe the fracture behavior of LYS100. Our results show that the fracture toughness of LYS100 can be up to around 1019 N/mm, which is almost twice as high as that of Q235 and one order bigger than that of gray cast iron. These findings will be a great help toward understanding the fracture properties of LYS steels and designing high-performance damping structures.

Publisher URL: https://link.springer.com/article/10.1007/s00707-018-2312-2

DOI: 10.1007/s00707-018-2312-2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.