3 years ago

fac-99mTc/Re-tricarbonyl complexes with tridentate aminocarboxyphosphonate ligands: suitability of the phosphonate group in chelate ligand design of new imaging agents

Malgorzata Lipowska, Jeffrey Klenc, Andrew T. Taylor, Luigi G. Marzilli

Publication date: Available online 10 November 2018

Source: Inorganica Chimica Acta

Author(s): Malgorzata Lipowska, Jeffrey Klenc, Andrew T. Taylor, Luigi G. Marzilli

Abstract

Ligands that coordinate via dianionic phosphonate groups have not been widely utilized in radiopharmaceuticals. N-(phosphonomethyl)iminodiacetic acid (1, PMIDA) and N-(phosphonomethyl)glycine (2, PMG) were investigated as new chelators for the 99mTc/Re-tricarbonyl “core” (fac-M(CO)3, M = 99mTc, Re) present in a major class of radiopharmaceuticals.

fac-M(CO)3(PMIDA) and fac-M(CO)3(PMG) complexes were studied by HPLC and 1H/13C/31P NMR methods for M = Re (Re-1 and Re-2) and by HPLC for M = 99mTc (99mTc-1 and 99mTc-2). Re-1 and 99mTc-1 complexes exhibit a similar pH-dependent equilibrium between geometric linkage isomers (M-1a and M-1b). However, only one isomer exists for M-2 under all conditions. Structural characterization by X-ray crystallography reveals the presence of a bond between a phosphonate oxygen and the Re(I) center in fac-Re(CO)3(PMG) (Re-2). Detailed comparisons of NMR data for Re-2 conclusively demonstrate that the phosphonate group is coordinated in Re-1b (isomer favored at high pH) but not in Re-1a, which has a dangling N-(phosphonomethyl) group. To our knowledge, Re-1b and Re-2 and their 99mTc analogs are the first well-documented examples of complexes with these metal-tricarbonyl cores having a dianionic phosphonate group directly coordinated in a fac-M(CO)3-O-P grouping. Pharmacokinetic studies using Sprague-Dawley rats reveal that 99mTc-2 is a robust tracer. Hence, phosphonate groups should be considered in designing 99mTc and 186/188Re radiopharmaceuticals, including agents with bioactive moieties attached to dangling carboxylate or phosphonate groups.

Graphical abstract

Graphical abstract for this article

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.