3 years ago

Pareto-optimal plans as ground truth for validation of a commercial system for knowledge-based DVH-prediction

Elisabetta Cagni, Andrea Botti, Yibing Wang, Mauro Iori, Steven F. Petit, Ben J.m. Heijmen

Publication date: November 2018

Source: Physica Medica, Volume 55

Author(s): Elisabetta Cagni, Andrea Botti, Yibing Wang, Mauro Iori, Steven F. Petit, Ben J.M. Heijmen


Treatment plans manually generated in clinical routine may suffer from variations and inconsistencies in quality. Using such plans for validating a DVH prediction algorithm might obscure its intrinsic prediction accuracy. In this study we used a recently published large database of Pareto-optimal prostate cancer plans to assess the prediction accuracy of a commercial knowledge-based DVH prediction algorithm, RapidPlan. The database plans were consistently generated with automated planning using an independent optimizer, and can be considered as aground truth of plan quality.


Prediction models were generated using training sets with 20, 30, 45, 55 and 114 Pareto-optimal plans. Model-20 and Model-30 were built using 5 groups of randomly selected training patients. For 60 independent Pareto-optimal validation plans, predicted and database DVHs were compared.


For model-114, differences between predicted and database mean doses of more than ± 10% in rectum, anus and bladder, occurred for 23.3%, 55.0%, and 6.7% of the validation plans, respectively. For rectum V65Gy and V75Gy, differences outside the ±10% range were observed in 21.7% and 70.0% of validation plans, respectively. For 61.7% of validation plans, inaccuracies in predicted rectum DVHs resulted in a deviation in predicted NTCP for rectal bleeding outside ±10%. With smaller training sets the DVH prediction performance deteriorated, showing dependence on the selected training patients.


Even when analysed with Pareto-optimal plans with highly consistent quality, clinically relevant deviations in DVH predictions were observed. Such deviations could potentially result in suboptimal plans for new patients. Further research on DVH prediction models is warranted.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.