3 years ago

Neuronal competition: microcircuit mechanisms define the sparsity of the engram

Priyanka Rao-ruiz, Julia Yu, Steven A Kushner, Sheena A Josselyn

Publication date: February 2019

Source: Current Opinion in Neurobiology, Volume 54

Author(s): Priyanka Rao-Ruiz, Julia Yu, Steven A Kushner, Sheena A Josselyn

Extensive work in computational modeling has highlighted the advantages for employing sparse yet distributed data representation and storage Kanerva (1998), properties that extend to neuronal networks encoding mnemonic information (memory traces or engrams). While neurons that participate in an engram are distributed across multiple brain regions, within each region, the cellular sparsity of the mnemonic representation appears to be quite fixed. Although technological advances have enabled significant progress in identifying and manipulating engrams, relatively little is known about the region-dependent microcircuit rules governing the cellular sparsity of an engram. Here we review recent studies examining the mechanisms that help shape engram architecture and examine how these processes may regulate memory function. We speculate that countervailing forces in local microcircuits contribute to the generation and maintenance of engrams and discuss emerging questions regarding how engrams are formed, stored and used.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.